If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 12t2 + 24t + 10 = 0 Reorder the terms: 10 + 24t + 12t2 = 0 Solving 10 + 24t + 12t2 = 0 Solving for variable 't'. Factor out the Greatest Common Factor (GCF), '2'. 2(5 + 12t + 6t2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(5 + 12t + 6t2)' equal to zero and attempt to solve: Simplifying 5 + 12t + 6t2 = 0 Solving 5 + 12t + 6t2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.8333333333 + 2t + t2 = 0 Move the constant term to the right: Add '-0.8333333333' to each side of the equation. 0.8333333333 + 2t + -0.8333333333 + t2 = 0 + -0.8333333333 Reorder the terms: 0.8333333333 + -0.8333333333 + 2t + t2 = 0 + -0.8333333333 Combine like terms: 0.8333333333 + -0.8333333333 = 0.0000000000 0.0000000000 + 2t + t2 = 0 + -0.8333333333 2t + t2 = 0 + -0.8333333333 Combine like terms: 0 + -0.8333333333 = -0.8333333333 2t + t2 = -0.8333333333 The t term is 2t. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2t + 1 + t2 = -0.8333333333 + 1 Reorder the terms: 1 + 2t + t2 = -0.8333333333 + 1 Combine like terms: -0.8333333333 + 1 = 0.1666666667 1 + 2t + t2 = 0.1666666667 Factor a perfect square on the left side: (t + 1)(t + 1) = 0.1666666667 Calculate the square root of the right side: 0.408248291 Break this problem into two subproblems by setting (t + 1) equal to 0.408248291 and -0.408248291.Subproblem 1
t + 1 = 0.408248291 Simplifying t + 1 = 0.408248291 Reorder the terms: 1 + t = 0.408248291 Solving 1 + t = 0.408248291 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + t = 0.408248291 + -1 Combine like terms: 1 + -1 = 0 0 + t = 0.408248291 + -1 t = 0.408248291 + -1 Combine like terms: 0.408248291 + -1 = -0.591751709 t = -0.591751709 Simplifying t = -0.591751709Subproblem 2
t + 1 = -0.408248291 Simplifying t + 1 = -0.408248291 Reorder the terms: 1 + t = -0.408248291 Solving 1 + t = -0.408248291 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + t = -0.408248291 + -1 Combine like terms: 1 + -1 = 0 0 + t = -0.408248291 + -1 t = -0.408248291 + -1 Combine like terms: -0.408248291 + -1 = -1.408248291 t = -1.408248291 Simplifying t = -1.408248291Solution
The solution to the problem is based on the solutions from the subproblems. t = {-0.591751709, -1.408248291}Solution
t = {-0.591751709, -1.408248291}
| -0.3x=400-700 | | 6=-3/-5(a-7) | | -0.3x=700-400 | | 32=x+3+x+4-x | | ln(-5x-6)=ln(2-4x) | | 51200=1x+.07x | | 2x+-5=(8x+7)-x | | 3-(x/7)=(5x/7)-9 | | c=3t+25 | | -50x=1800-3000 | | (x+5y)(x+5y)=180 | | S=.5(300-10e) | | b-4x=-10 | | 2x+-5=(8x+7)-1x | | 2x+5=8x+7-x | | 4x200=1/6-1000 | | 2x+-5=8x+7-x | | 3-x/7=5x/7-9 | | 3000x=1800-50 | | -3000x=1800-50 | | 4r^4-4+15r=0 | | 4188=-22a | | 3r^3+12r^2=63r | | x^7-80x=1000000 | | 3-4x=7x | | (x-4)2=256 | | 6(x+4)=x-2 | | 176/1000 | | 13z-36= | | 41n(x-2)=20 | | t=hr | | 7x-9-11x=13x+15-15x |